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Abstract

An explicit topological approach to the dimensions of LCB polymers is presented. It is based on the Wiener number, a topological
descriptor which is shown in this study to be related to the topological radius of the macromolecule, the mean-square radius of gyration, the g-
ratio, and the intrinsic viscosity within the Rouse—Zimm range. The new theory enables the treatment of the highly complex hyperbranched
polymers, which are difficult to handle by the classical theory of Zimm and Stockmayer. The agreement with the measured g-values of model
polyethylenes, synthesized by Hadjichristidis et al., is fairly good for star-like polymers and satisfactory for pom—pom type of structures,
whereas for crowded comb-type species the calculated g-values are underpredicted. Extension of the approach is shown to cyclic structures

for which the Kirchhoff number replaces the Wiener number. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In their seminal paper ‘The Dimensions of Chain
Molecules Containing Branches and Rings’ [1], Zimm and
Stockmayer presented a theory for the mean square radius of
various branched and ringed polymer molecules proceeding
from a statistical treatment of the polymer chain conforma-
tions in #-solvent. For more than fifty years this theory has
been regarded as a paradigm standing at the very heart of
polymer science and engineering. (Some recent appeals to
reduce the importance of this theory at the expense of some
modern ideas, based on scaling and percolation arguments
[2], would in our opinion only contribute to a better inter-
play of the classical and modern theories). One of the major
developments in polymer theory during these fifty years was
the recognition of the fact that the basic interactions in
polymers are topological in nature, i.e. they do not depend
on specific chemistry. Eichinger [3—6] and Yang [7] used
the mathematical formalism of graph theory [§—10] in the
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analysis of the radius of gyration of polymers. Both studies
proceed from the equivalence of the Rouse and Zimm
matrices [11,12] in the theory of viscoelasticity to the
adjacency matrix and admittance (or Kirchhoff) matrix in
graph theory, and they are centered on solving the eigenvalue
problem of these matrices [3—6] and finding the polynomial
coefficients [7]. Albeit producing elegant formulas for linear
and cyclic polymers, these methods become cumbersome for
highly branched systems. It is therefore worthwhile to apply a
different graph theoretical technique that would further
simplify the description of polymer dimensions. Such is the
technique based on the distance matrix of the graph, and the
Wiener number [13,14], which counts all the distances in the
graph. The distance matrix and the Wiener number of
graphs have been widely used in characterizing molecular
branching and cyclicity as the most essential features of
molecular topology [15-19]. The Wiener number is one
of the most commonly used topological descriptor of mole-
cular structure with broad applications in areas ranging from
drug design and material design to characterization of
polymers and crystals [20-26]. Recently, three journals
covering the area of theoretical and mathematical chemistry
marked by special issues the 50th anniversary of the Wiener
number (see e.g. Ref. [27]). The Wiener number is a much
more powerful descriptor of polymer topology than the
degree of branching [28-30], (defined with respect to the
branching in a perfect dendrimer, taken as a standard for
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maximum branching), which could be the same for
polymers with quite different topology [31].

A careful analysis of the Zimm—Stockmayer paper has
shown that it uses parameters that are implicitly graph-
theoretical ones: branch units for branched graph vertices,
and functionality for vertex degree. Moreover, as it will be
demonstrated in Section 2, in deriving the formulae of
Zimm-Stockmayer theory other intermediate parameters
may be interpreted (though not originally identified) as impor-
tant graph invariants, such as the vertex distance (the sum of
the integer distances from a vertex to all the other vertices in
the graph) and the graph distance, which is the Wiener number
itself. Thus, one may qualify the Zimm—Stockmayer theory as
an implicit topological theory of polymers.

This study presents the fundamentals of an explicit
topological Zimm-Stockmayer theory. It will be shown
that the formulae of the Zimm-Stockmayer theory, as
well as new formulae for complex hyperbranched polymers,
which are difficult to handle within the classical theory, can
be derived on a purely topological basis, proceeding from
the distance invariants of three fundamental polymer graphs
we introduce. The random distribution polymer graph
(RDG) is the smallest graph mapping the basic topology
of any ensemble of polymers having a given number of
branch units, at a variable molar mass, spacer length, branch
length and branch position along the polymer backbone
(branch centrality). The uniform polymer graph (UPG)
represents the set of polymers with the same number of
branch units and the same branch lengths at a variable
molar mass, spacer length, and branch centrality. In the
long chain branch graphs (LCBG) the spacer length is
also kept the same but different from the constant branch
length. In deriving the formulae for the RDGs we do not
introduce any approximations, whereas those for the UPGs
and LCBGs are obtained both with and without simplifica-
tions. This allowed an evaluation of the effect of the approx-
imations made by Zimm-Stockmayer. The theory presented
in this paper is applicable to monodisperse polymers and
narrow distribution fractions. This is a necessary prelimin-
ary step to understanding polydisperse LCB systems and
their molar mass (molecular weight) and branching distribu-
tions [32-35].

2. Re-examining the Zimm-Stockmayer formula for the
radius of gyration of linear polymers

12345 i N

The Zimm-Stockmayer formula for the mean square
distance, X2, of the rest of the chain from a reference
segment is

N N
X2 =BIN)D ny=@IN)D i )
i=1 i=1

1

where n; is the number of segments between the reference
terminal segment /, and the ith segment, and N is the total
number of segments (a segment is defined as a small unit
which by repetition may be considered to generate the
chain). In deriving Eq. (1) Zimm and Stockmayer proceed
from the basic assumption that for flexible chains the mean
square distance (x?) from the reference segment to any
segment i is proportional to the number of segments n;
between them:

7y =bn; )

the proportionality constant b being determined by the
detailed structure of the chain, especially the length and
flexibility of its bonds. It is through Eq. (2) that topology
and graph theory become involved because the number of
segments 7; may be interpreted as the number of vertices
in the graph representing the polymer structure. Eq. (2)
makes thus possible the use of the graph theory formalism
in reexamining the Zimm-Stockmayer formulae.

After representing the segments by the vertices in the
chain graph shown above, Eq. (1) may be reinterpreted
and modified as follows:

(i) n; = i is in fact the integer distance between vertices 1
and i, dy;,

(i1) the summation starts with the distance to the second
vertex. Thus, the total number of distances is N — 1;
(iii) the sum itself is a well-known graph invariant called
vertex distance [3,4] or distance sum [19], d,;, calculated
for the terminal vertex 1 in the linear graph. Dividing by
the number of distances (N — 1), the average distance
N/2 of the reference vertex 1 is obtained

b2 N-1 N
X = di=p. 3)

Eq. (3), derived without any simplifications, coincides
with the Zimm-Stockmayer [1] formula (10), which
however was obtained by dropping terms of order unity,
at which a chance canceling of the dropped terms occurs.

The revisiting of the Zimm-Stockmayer formula for the
average mean square distance, (Zz>, from the reference
segment to the center of mass

N
(Z%) = @D'IN*) 3 (N = mm; “)

i=1
(i) identifies (for acyclic graphs only) the sum as the well-
known graph-invariant termed graph distance [8] or

Wiener number, W [13,14], which for linear graphs
(chains) is calculated by the formula

N
Wenain = (N = nn; = N(N = D)(N + 1)/6 )
i=1

(1) the correct averaging in this case is to divide by the
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total number of distances in the graph which is N(N — 1)/2
(instead of N%/2).

After substituting (i) and (ii) into Eq. (4) one obtains

_ L2NN-DWN+1) LN+
)="b 6N(n — 1) =b 3

4 (6)
instead of the Zimm-Stockmayer approximate result b>N/3.

Combination of these results yields the mean square
radius of gyration, ré

@ =x @)=y~ 2 ™
Dividing by the total end-to-end length square distance,
R = bz(N — 1), one arrives at the expression
(rg)  1N-2 o
R*  6N-—1 ®
the numerical estimate of which shows that the Zimm-—
Stockmayer value 1/6 is correct to the third decimal point
for linear polymers containing more than 1000 segments,
which for polyethylenes (assuming the ‘segment’ of the
Zimm-Stockmayer theory to be a synonym of a —CH,—CH,
group) means more than 2000 carbon atoms or molar mass
higher than 30 000. Thus, for precise calculations with oligo-
mers, Eq. (8) might be preferred rather than the value 1/6.
For branched species we will not revisit the Zimm—Stock-
mayer analysis of polymers with one to five branch units,
because this analysis strongly relies on the specific choice of
a reference segment in the macromolecule. Rather, we will
reinterpret the Kramers theorem [36], used in the second part
of the Zimm—Stockmayer paper [1], as a general approach to
the problem of the macromolecule dimension. To start with we
show that there is no need of a specific fragment when one
proceeds from our more general concept for the topological
radius of a molecule.

3. Topological radius of a molecule. Random
distribution polymer graph (RDG)

3.1. Preliminary information on the graph-theoretical
formalism

Industrial polymers are a complex mixture of macro-
molecules with different molar mass and branching, as
described by the branch number, length and positioning
along the main chain. All this variety makes difficult the calcu-
lation and prediction of polymer properties. However, the
problem can be greatly alleviated by introducing the concept
of the polymer random distribution graph (RDG). These
graphs present the highest degree of abstract generalization
for the variety of random distribution polymers having a
constant number of branches. All such polymers irrespec-
tive of the length, spacing, and positioning of their branches
are modeled by a single connected graph for polymers
having up to three branches and by a set of ‘isomeric’ graphs
for polymers with four or more branches for which more

than one macromolecule architecture is available. Thus,
what is actually preserved in the polymer random distribu-
tion graph (RDG) of acyclic polymers is the basic topology,
the branching patterns of the polymer skeleton.

In describing polymer topology we proceed from the
following definitions:

Definition 1. A graph G is a mathematical structure
composed of points called vertices, which are connected
by lines termed edges. Simple connected graphs have no
isolated vertices, as well as no loops or multiple edges.

Definition 2. A vertex degree, a;, is the number of edges
emanating from the vertex i.

Definition 3. The distance d;; between graph vertices i and
Jj is an integer counting the number of edges along the short-
est path between them. The distance matrix of a graph, D(G)
having N vertices is a square NXN matrix symmetric with
respect to the main diagonal. The diagonal elements d;; = 0.

Definition 4. The graph distance, commonly known as the
Wiener number, W(G), is the sum of the distances between
all pairs of vertices in the graph. It is equal to the half-sum of
the distance matrix entries d;.

| NN
WG =33 > d )
j=1 i=1
The Wiener number was shown to be an effective
measure of the degree of branching of molecular skeleton
[15,18].

Definition 5. A proper graph is a graph, which contains
only two types of vertices—terminal (with vertex degree
one) and branched (with vertex degree =3) ones.

Definition 6. (New): A random distribution polymer
graph (RDG) is a proper graph representing the smallest
homomorphic image of each of the polymers in an ensemble
of polymers having a constant number of branches, and a
variable molar mass, as well as variable length, spacing, and
positioning of their branches. (Two structures having the
same connectivity are called homomorphic.)

An illustration is shown below with the RDGs of acyclic
polymers with one, two, and three branches, as well as with
the distance matrix and the Wiener number of RDG(2).
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Fig. 1. Isomeric random distribution polymer graphs (RDGs) having four to
seven branch units.

Definition 7. (New): Isomeric random distribution poly-
mer graphs are nonisomorphic RDGs having the same total
number of vertices N and the same number of branched
vertices (branch units) B (see Fig. 1).

Definition 8. (New): The topological radius of an acyclic
(see Section 9 for a more general definition) macromolecule
having N atoms is the average distance in its corresponding
polymer graph, i.e. the Wiener number W of the graph divided
by the total number of distances in the graph, N(N — 1)/2 :

2w
R = - 10
W= NN (10)
Definition 9. The normalized Wiener number W’ of a
graph is the Wiener number W divided by that number
Wi, of the linear graph having the same number of atoms N:

W' = WiWy, (11)

It should be mentioned that the Wiener number of a
macromolecule is a polynomial of degree three in the
number of vertices [23-26]. Therefore, the topological
radius of a macromolecule is linearly proportional to the
number of atoms N, whereas the normalized Wiener number
W' is a dimensionless number equal to one for linear species
and less than one for branched ones.

In earlier applications of graph theory to polymers [23—
26] its dimensionless measure of macromolecule branching,
W, was introduced. The Wiener number of a polymer
homologue series was doubly normalized by dividing it by
the total number of distances N(N — 1)/2 (as in Eq. (10)),
and then by dividing by the number of bonds N — 1. The
limit of the ratio of the two polynomials, W, has the
meaning of the average topological distance per bond in

an infinite macromolecule. It was used as a structural
descriptor for the real polymers, correlating highly with
different physicochemical properties and electron energies.
However, it is only in the present study that the real meaning
of the first averaging is understood as defining the topo-
logical radius of the (macro)molecule. Moreover, as it will
be shown below, the new dimensionless parameter of mole-
cule branching W’ has a direct interpretation as the Zimm—
Stockmayer branching index g, which defines the dimension
of a branched macromolecules relative to that of linear
polymer with the same number of atoms.

3.2. Two theorems relating the radius of gyration to the
topological radius and the Wiener number of the
corresponding polymer graph

Theorem 1. The mean square radius of gyration <r§> of a
macromolecule containing no atomic rings is linearly
proportional to the topological radius of the macromolecule
Rtop:
N bW

(rg) = b°R,p/2 = NN -1 (12)
where the proportionality constant b has the same meaning
as in the Zimm—Stockmayer theory [1], i.e. it depends on the
length and flexibility of the bonds in the structure.

Proof. From Kramers’ theorem [36], cited as formula (35)
in Ref. [1], the mean square radius of gyration <r§> of a
macromolecule containing any number of branches but no
rings is given by

(rg) = B*(N.Ng)a,/N (13)

where N is the total number of atoms, N;, and Ny are the
number of atoms in the left and right fragments, respec-
tively, obtained by cutting the molecule at one bond, and
the averaging is taken over all bonds.

Wiener [13] defined his ‘path number’ W in a similar
manner as

W= Z N Ng (14)

all bonds

(It was only 24 years later that Hosoya [37] proved that for
acyclic graphs Eq. (14) is equal to the half-sum of the distance
matrix entries, Eq. (9). The proof is briefly as follows: Eq. (9)
may be transformed for acyclic graphs into the sum of all
paths lengths in the graph, and then be partitioned into the
sum of the lengths of the paths traversing each edge, the
latter being presented a the products N Ng.)

Averaging Eq. (14) by dividing by the number of graph
edges N — 1, substituting into Eq. (13), and using Definition
9, one arrives at
(NLNg)ay = % and

bW b

2 = —— =
w=gn—1 = 7R
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which proves the theorem. A general proof and generalization
of Theorem 1 is given in Section 9 based on the relation
between the Wiener number and the eigenvalues of the
Laplacian matrix of the graph. [J

Theorem 2. The normalized mean square radius of gyra-
tion of a set of acyclic polymers with a constant number of
branch units B and random distribution (r.d.) of molar mass,
branch length, and branch position (the Zimm—Stockmayer
branching index g) is equal to the normalized Wiener
number W' of the random distribution polymer graph for
B =1, 2 or 3 and to the average normalized Wiener number
(W'Y of the respective isomeric RDGs with B = 4.

forB=1,2,3  g(rd.)= W'(RDG) (15a)

forB=4  g(rd)=(W)RDG) (15b)

Proof. Equality (15a) follows from Eq. (12) and Defini-
tion 8 (Eq. (10)), the constants in which are canceled when
applied both to the macromolecules in question and the
linear structure having the same number of atoms N.

(r9) W) W(RDG)

= = = W/(RDG
20 W) WynRDG) " KPD

g(rd) =

(15¢)

The validity of our Theorem 2 is verified by the mathe-
matical identity of the formulas derived by us for W’
and those of Zimm and Stockmayer for g of the simplest
classes of branched polymers, and by those derived later by
Kurata and Fukatsu [38] for the major classes of acyclic
polymers. [

Due to the extremely simple graphical representation of the
random distribution polymers, the calculations of g in our
approach are also very simple. An example for random distri-
bution 3-arm stars is given below with the Wiener number
calculated by Eq. (9) as a sum of distances of different length:

&3-star(r.d.) = W(RDG(4))/W(RDGyip )
=@BX1+3X2/3X1+2x2+1x3)=09,

where W(RDGy;,) is the Wiener number of the linear graph
having the same number of four vertices like RDG(4).

o35

RDG(4)

0—0—0—0
RDG(0)

3.3. The g-ratio (the normalized Wiener number) for RDGs
having simple branches (first-order branches, ‘normal’
RDGs)

Consider a random distribution graph with N vertices and

B branch units having branches of length one (first-order
branches). As stated above, such a graph contains only
two types of vertices: terminal vertices of degree one and
branched vertices of degree (or functionality) f. The three
parameters are related by the equation

N=B(f-1)+2 (16)
f=3 f=4

The general formula for the Wiener number of a RDG
having B first-order branch units of functionality f is (see
Appendix A):

W=B(f"-D+1+L(f-1BB +6B-17) (17)

The Wiener number is normalized by dividing by the
value Wy, it has for the chain graph with the same number
of vertices. Taking into account the relation (16) between N,
B, and f, and the formula (5) for the Wiener number of a path
graph, one obtains:

4
B Wlin

g=Ww

_6B(P - D+ 11+ (f— 1’BB-DB+7)
[B(f — 1)+ 1I[B(f — D) + 21[B(f — 1) + 3]

This is a general formula valid for any number of branch
units B and any vertex degree (atom functionality) f within
the class of polymers having first-order branches
(unbranched branches) only. It is a purely topological
formula because it does not contain any parameter related
to the real metric of polymers. It is important to point out
that substituting B = 1, 2, and 3 in Eq. (18) produces formu-
lae that are identical with the Zimm-Stockmayer [1]
formulas (22)—(24) for the normalized radius of gyration
g of branched materials with one, two, and three branch
units, respectively, distributed at random. For B > 3,
some numerical data have been presented [1] along with a
scheme for their calculation. Analytical expressions for g
and radius of gyration models have been presented later by
Wales, Marshall, and Weissberg [39], by Orofino [40],
Berry and Orofino [41], Kurata and Fukatsu [38], Gordon
and Dobson [42—44] and others. The closed-form formula
derived by Kurata and Fukatsu [38] is:

(18)

_6pt+(f—1’BB - 1)
g(rd) = o+ D+ 2) (19)

where p is the total number of subchains (spacers, branches,
and main chain ends):

p=N-1=(f—-1DB+1 (20)

It can be shown that our independently derived Eq. (18)
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can be transformed into Eq. (19), and these two formulae
produce the same g-values.

Eq. (18) may be used to determine the limit of the g-ratio
as approached from above (the upper limit obtained for
B =1 is given by the well known values of g = 0.9 for
f =3 and g = 0.8 for f = 4):

lim
B—oo Wy,

B(f*— 1)+ 1+(f—1)*BB - 1)B+7)6
sew [B(f — 1)+ LIB(f — 1) + 2IB(f — 1) + 31/6

(-1
- - e

Corollary 1. The normalized mean square radius of gyra-
tion g of random distribution acyclic polymers having only
first-order branch units cannot be smaller than 1/2 for
branch units of functionality three, and it can not be smaller
than 1/3 for branch units of functionality four.

3.4. The g-ratio for polymers having singly-branched
branches (first- and second-order branches)

There is more than one random distribution polymer
graph for a number of branch units B larger than three,
and the variety of such isomeric RDGs increases fast
with B. Below, we present the formula derived for the
RDGs with any number of singly-branched branch units
(termed here second-order branches) and any functionality
f (see Appendix B for details).

WQR)=B(f*—1)+1+ é(f — 1)2[3(3 - DB +7)

i—1 i

—6ZB(z—1+ D B)(B—i—ZBS)]
s=j— 1 s=j

(22)

In Eq. (22), the positions of the branches along the main

1.2

chain are denoted by i, j, k..., t, respectively, B; and By
denote the number of branched units in the respective
branched branches i and s. As seen from Eq. (22), the
Wiener number of the polymer random distribution graphs
having second-order branches is obtained from the Wiener
number of the random distribution graph with the same
number of branch units B having first-order branches only
(the first two terms in Eq. (22)), with a negative corrective
term. Thus, the appearance of second-order branches, which
increases the degree of branching of the respective statisti-
cal polymers, diminishes the Wiener number, i.e. reduces
the normalized radius of gyration g.

Specific cases of Eq. (22), describing the RDGs with one
and two branched branches, are given below.

W, = B(f—1)+1+6(f 1*[B(B — 1)(B + 7)

— 6B;(j — D(B —j — B))] (23)

Wi=B(f’-D+1+Lf-DBB-DHB+7)

—6B;(j — 1)(B —j — B;) — 6B,(B; + k — 1)

X(B —k—B; = By)l. 24

In calculating g = W' = W/W,;, of these cases, Wy, is
taken as used in Eq. (18).

3.5. Ranges of g-values and their averaging

It is easily assessed that when the number of branches is
small, the normalized Wiener number varies within a
relatively narrow range of values. However, when the
number of branches is large, the variety of isomers spans
over a very broad range of values. Thus, for functionality-
three polymers and B = 5, W' ranges only from 0.703 to
0.675; for B = 15, the range spans from 0.587 to 0.437; for
B = 50, the variation is a substantial one (0.529-0.249). In
the last two cases, the highly branched isomers strongly
dominate thus making the average W’ value closer to the
lower limit of the respective ranges. These examples

1 .
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Fig. 2. Ranges of the g-ratio in statistical polymers having up to 150 branch units of functionality three.
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Fig. 3. Ranges of the g-ratio in statistical polymers having up to 150 branch units of functionality four.

emphasize also how strongly topology influences macro-
molecule size at a constant molecular weight. In full detail
the effect of branching on polymer dimension can be
evaluated in Figs. 2 and 3 by comparing the two limits of
g-values at a given molecular weight.

It may be shown that the limit of the normalized Wiener
number for RDGs having branch units of both first and
second order is zero. This limit, however, could be reached
with an accuracy of 0.001 only in polymers having more
than a million branch units. For real-life statistical hyper-
branched polymers of functionality three, W’ = g is always
larger than 0.100 for polymers with less than 250 branch
units; it is larger than 0.200 for polymers with less than 80
branch units, and larger than 0.300 for polymers having less
than 34 branch units. For hyperbranched polymers having
branch units of functionality four, W' = g remains always
larger than 0.100 for structures with less than 135 branch
units; it is larger than 0.200 for polymers having less than 35
branch units, and larger than 0.300 for polymers having less
than 16 branch units.

Detailed information about the ranges of g-values (the
normalized Wiener number) is presented in Figs. 2 and 3.
The upper limit of these ranges is determined by the values
for the RDGs having first-order branches. Two lower limits
are shown. The first one refers to polymers having branches

1.1

of first and second order, as defined above. The absolute
lower limit is the one for the dendrimers, the polymers
with the highest degree of branching. In the last case, we
made use of the formula for the Wiener number of regular
dendrimers, derived by Gutman et al. [45]. After expressing
the total number of atoms in terms of branching vertex
functionality f and the dendrimer radius r (the number of
edges from the core vertex to any of the terminal vertices):

N=[f(f=D" =2If -2 (25)

and after applying Eq. (5), the following g-ratio results for
dendrimers:

g(dendrimers)

S DI 20+ I 12— 1) - 1)
[(F =1 = P — 1Y = 20 (f — 1 +/ — 4]
(26)

As seen from Figs. 2 and 3, the g-values for regular
dendrimers are lower than the lower limit for the respective
polymers having branches of first and second order only. In
fact, the dendrimer curves in Figs. 2 and 3 are interpolations
from the discrete points obtained by formula (26): for f = 3,
and generation radius r = 1 to 5, g = 0.900, 0.709, 0.513,

| —&—Wmax | ;

! —o—Wmin

| —0—Waverage | |

0.9 1 | ——Wavert i

| —A—Waver2 ;

o 08 - -
0.7 4
06 |
0.5 - -
(] 1 2 3 4 5 6 7 8 9 10
Number of Branches

Fig. 4. Ranges and average values of g-ratio for statistical polymers having 0—10 branch units of functionality three.
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Fig. 5. Ranges and averages values of g-ratio for statistical polymers having 0—10 branch units of functionality four.

0.349, and 0.226; and for f = 4, g = 0.800, 0.490, 0.254,
0.118, 0.051, respectively.

Figs. 4 and 5 contain some information on the averaging
of the g-index in statistical polymers. Three different
average values are presented and compared: the first average
makes use of specified isomer ratios based on the RDG
symmetry, the second one is an arithmetic mean of the
values for all isomers, and the third estimate is the median
of the lower and upper g-boundaries. As shown in these
figures, the difference between the first two estimates
decreases and at 10 branch units it disappears for the poly-
mers with tetrafunctional units, while remaining negligibly
small (0.003) for those with f = 3. This trend allows one to
avoid for B > 10 the calculation of isomer concentrations
(ratios) and to proceed with the arithmetic mean of the g-
values of isomers only. The third average deviates from the
first two when the number of branches exceeds eight.

3.6. Polymers having branches of third and higher order

The emergence of branches on branched branches
diminishes further the Wiener number as compared to a
parent isomeric structure having only branches of first and
second order at the same total number of branch units B, the
same number B; of branch units in the branch j. The formula
for these complex cases can be presented by subtracting
from Eq. (22) a corrective term C; for each third order
branch at the first order branch j:

W'(3rd order) = W'(2nd order) — Z AW'(C)) 27)
J

The formula for the AC; term is derived in Appendix C.
The same strategy can be followed for polymers having
branches of any higher order. Thus, for the RDGs with
fourth order branches, the formula for W' can be obtained
from Eq. (27) with an additional corrective term AW’ (Gy») for
each fourth order branch starting with vertex j' of the second
order branch. If fourth order branches are available at different
j/s, each one is accounted for by a separate C j/ term, etc.

W'(4th order) = W'(3rd order) + Z AW'(Cy) (28)

J

Egs. (27) and (28) show the way to calculate the Wiener
number of the random distribution polymer graphs with any
degree of branching. The formulas may be applied to generate
a standard table with W’ = g values of branched polymers, as
well as for the change in the Wiener number upon a recursive
procedure of generating RDGs with an increasing number of
branch units. Due to the very complex architecture of such
hyperbranched polymers, the formulae for the Wiener
number also become rather complex. However, the calcula-
tion of the Wiener number and g of individual isomers
makes sense only up to a certain limited number of branches
B, because not only complexity of macromolecules
increases rapidly with B but so does the number of isomeric
species. Due to this, average estimates of g for higher levels
of branching are needed. In Figs. 4 and 5 we have already
shown such estimates obtained from the calculations of all
individual species having up to 10 branch units.

The calculation of average g values for larger number of
branches requires a different approach. Such an approach
based on generating series has been developed recently [46]
for calculating the average values of molecular properties.
Calculations of the Wiener number have been performed up
to a hundred branch units of functionality three and four
[47]. In the present study, the average Wiener numbers
from [47] were used as a basis in calculating the average
g values, with the Wiener number of the corresponding
linear polymer used as a normalizing factor. The results
are shown in Table 1. For B =4 — 10 the values in Table
1 are the average g-values of the individual isomeric struc-
tures calculated according to our formulae. In the averaging,
the generation probabilities of each species was taken into
account. When the averaging is done as an arithmetic mean,
as for all other data in Table 1, the values obtained diverge
slightly from the more exact averages: for B =4 — 10 and
f =3 these are 0.721, 0.689, 0.651, 0.625, 0.599, 0.579,
0.557, and for f =4 they are correspondingly 0.558,
0.512, 0.481, 0.453, 0.428, 0.407, and 0.390. As seen from
the comparison with Table 1, for f = 4 the difference vanishes
at B = 10, whereas for f = 3 and B = 10 it is reduced to
0.003. Evidently, for B > 10 the averaged g-values produced
by the generating function method are accurate enough and
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Table 1

Average g-values of random distribution polymers having up to 101 branch units obtained by using generation functions

B §(U=3 s=4 B §(U=3) s(=4 B §U=3 s§=4
1 0.900 0.800 35 0347 02199 69 0259 0.157
2 0.829 0.690 36 0343 02166 70 0257 0.156
3 0.774 0.6188 37 0339 02144 71 0.255 0.155
4 0.728 0.5644 38 0335 02111 72 0.254 0.154
5 0.690 05222 39 0332 0.2088 73 0252 0.153
6 0.656 0.4877 40 0328 0.2066 74 0251 0.152
7 0.626 04577 41 0325 0.2033 75 0.249 0.151
8 0.600 04322 42 0.321 0.2011 76 0.248 0.150
9 0576 0.4101 43 0318 0.1988 77 0.246 0.149

10 0.554 03909 44 0315 0.1966 78 0.245 0.148

11 0539 03744 45 0312 0.1944 79 0.243 0.147

12 0.524 0.3606 46 0309 0.1922 80 0.242 0.146

13 0510 0.3488 47 0306 0.1909 81 0.241 0.145

14 0.497 0.3366 48 0.303 0.1888 82 0.239 0.144

15 0.485 03266 49 0301 0.1866 83 0.238 0.143

16 0473 03177 50 0.298 0.1844 84 0.237 0.143

17 0.463 03088 51 0.295 0.1833 85 0235 0.142

18 0.453 0.3003 52 0.293 0.1811 86 0.234 0.141

19 0.444 02933 53 0.291 0.1799 87 0233 0.140

20 0435 0.2866 54 0.288 0.1788 88 0.232 0.139

21 0.427 0.2808 55 0.286 0.1766 89 0231 0.139

22 0419 0.2744 56 0.284 0.1744 90 0.229 0.138

23 0412 0.2688 57 0.281 0.1733 91 0.228 0.137

24 0.405 0.2633 58 0.279 0.1711 92 0.227 0.136

25 0398 0.2588 59 0277 0.1707 93 0.226 0.136

26 0392 02533 60 0275 0.1699 94 0.225 0.135

27 0386 0.2488 61 0273 0.1677 95 0.224 0.134

28 0.381 0.2444 62 0271 0.1666 96 0.223 0.133

29 0375 0.2404 63 0.269 0.1644 97 0222 0.133

30 0370 0.2366 64 0.267 0.1633 98 0.221 0.132

31 0365 02333 65 0.265 0.1622 99 0220 0.131

32 0.360 0.2299 66 0.264 0.1611 100 0219 0.131

33 0356 0.2266 67 0.262 0.1606 101 0218 0.130

34 0351 02222 68 0.260 0.1588

there is no need to calculate the values of the numerous
individual isomers.

4. Acyclic statistical polymers with mixed functionalities

The Zimm-Stockmayer theory [1] does not offer
formulas for mixed branching types. We present explicit
formulas for a regular mixing of B branch units with two
different functionalities f; and f,. The examples given deal
with the most common functionalities, f = 3 and f = 4.

4.1. Even number of first-order branches

AFEE e o ode ok

W=12 W,= f,2
W(B-even) = g( fE+H—-B-1
+ LG -0 - BB 68 +2)

1
ol - D + (s — D’1B(B — 2)(B + 8). (29)

4.2. Odd number of first-order branches
-$33338338d0 modo modo
W=12 W,= 2

-1
2

1
X(fo= DB = DB+ DE+6)+ —(fi = *B - 1)

B+1 B 1
W(B-0dd) = = 12+ fzz_(B_l)+§(fl_1)

XB+DB+9)+(fs — DB — 1)(B — 3)(B + 7).
(30)
Egs. (29) and (30) reduce to Eq. (17) for the case of (normal)
single branching type with f; = f.

In order to calculate the normalized Wiener index we
present below the formulae for the Wiener number of the
linear chain with the same total number of vertices as that of
the even and odd normal polymers with mixed functionalities.

W, (B-even) = (5B + 2)(5B + 4)(5B + 6)/48 @31)

The class of polymers with mixed branching and an odd
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Table 2

The calculated g-ratio (the normalized Wiener number) of normal even and
odd acyclic polymers with regularly mixed branching functionalities (the
meaning of a ‘normal’ polymer here is the same as in Section 3, i.e. these
are polymers having first-order branches only)

Number of branch units Functionalities of branch units W =g

2 34 0.750

3 343 0.700
4,34 0.673

4 3434 0.640

5 34,343 0.613
43434 0.600

6 343434 0.581

number of branch units divides into two subclasses depend-
ing on whether the terminal branch unit has a functionality
larger than that of the next-to-terminal one or vice versa: for
f2<f2,n' = (5B + 3)2,and for f£ > f7,n" = (5B + 5)/2.

W]Im(B-odd) = (5B + 1)(5B + 3)(5B + 5)/48 (32)

Wi (B-0dd) = (5B + 3)(5B + 5)(5B + 7)/48 (33)

From Eqgs. (29)-(33), one can directly calculate the
normalized Wiener index for the examined cases of
‘normal’ polymer with mixed branching. According to our
Theorem 1, the values obtained are equal to those of the
radius of gyration g, averaged over a random distribution of
branch lengths and positions along the polymer backbone.
The numerical results are presented in Table 2.

5. The concept of uniform distribution graph (UDG) and
its relation to the polymers having equal chain lengths

The class of polymers having equal chain lengths [1],
called also uniform distribution polymers [38], is modeled
by another type of polymer graphs.

Definition 10. The uniform distribution polymer grap
(UDG) with N vertices is a symmetric graph having all
chains (branches, branch spacers, and chain ends) of equal
length [ edges (or of equal molar mass M,).

A set of UDGs corresponding to one RDG is shown

below.
Mg
g § M, Mg
O_

oS
RDG UDG1 UDG2 UDG3 ...

The UDG differs from the random distribution polymer
graph (RDG) in having one more structural variable in addi-
tion to the number of branch units B and functionality f. This is
the size of the chains /, which varies depending on the number
of unbranched vertices of degree two the chain contains.

(Such vertices are not allowed in the RDGs, which charac-
terize the most general topological properties of polymers.)

The following relations exist between the UDG para-
meters (M and My are the total mass and the mass of a single
chain, respectively):

N=[(f—-DB+1]l+1; = Mg — 2)/14;
(34)
N =M — 2)/14.
Example:

B=3, f=3, 1=4, N=29, Mg=57

Theorem 1, proved in Section 3, can be applied to
uniform distribution polymer graphs as well: The mean
square radius of gyration < ré > of a set of macromolecules
having no rings whereas having a uniform number of branch
units and equal chain length (e.c.l), is proportional to the
mean topological radius R, of the uniform distribution
polymer graph of these macromolecules:

<r§(e.c.1.)> = D*Rygy/2 (35)

Theorem 3. The Zimm-—Stockmayer g-ratio of acyclic
statistical polymers having a constant number B of branch
units and equal chain lengths (e.c.l) is equal to the normal-
ized Wiener number W' = W/Wy, of the corresponding
uniform distribution polymer graph (UDG).

forB=3 gle.cl) = W'(UDG) (36a)
forB >3 gle.cl) = <W' > (UDG) (36b)
O

The proof of Theorem 3 is analogous to that of Theorem
2, Section 3. Below, we present a general formula (derived
in Appendix D) for the Wiener number permitting a calcu-
lation of g(e.c.l.) for any number and length of the branches,
as well as for any functionality of the branch units in this
class of polymers.

W(UDG) = ﬁ(MB — D{(My + 12)(6M — 4My — 32)

12 X
X[(f=DB+ 11+ My —2)B— DB+ D(f -1

X[3(M — Mg) — B(f — DM — 2) — 42]}. (37

For polymers, Eq. (37) may be simplified by neglecting
the terms of order unity and those of order ten, which are
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small relative to M and M,

3

W(UDG) = — f‘f43 [B°(f — 1) +3B°(f — 1)’ - B

X(f=D(f =5 +1] (38)

To normalize W(UDG) we divide it to the Wiener number
of the linear graph having the same number of vertices N:

Win(UDG) = £ (° = N)

[(f — DB + 11’M;s — 196[(f — 1B + 1]My
= (39)
6x 143
_ Mil(f - DB+ 1P

6% 143

By dividing Egs. (39) and (40), and following Theorem 3,
we arrive at a result which no more depends on the size of
the macromolecule and its branches; it depends on its
topology only:

gle.cl) = W'(UDG)

_ B¢ - D43 1)’ - B(f — D(f —5) + 1]
[(f — DB+ 1P

(40)

Simple formulas result for g(e.c.l) for any specific
functionality:

4B+ 12B> +4B + 1)

f=3=gecl)=W(UDG) = (2B + 1)

(41)

9B® +27B* + 3B+ 1)
(3B + 1)

f=4=g(ecl)= W' (UDG) =
(42)

On the other hand, substituting B = 1 in Eq. (40) produces
the formula [38] for the g-ratio of uniform (regular) stars:

g(star) = (3f — 2)/f* (43)

The exact, more complicated formula for W' is also
obtained from Eq. (37) by dividing it to Eq. (39), thus pro-
viding the opportunity to assess the accuracy of Eq. (40) for
a wide range of MWs. The analysis shows that Eq. (40) is a
limit that is reached with an exact third decimal place at
MWs ranging from 6000 to 25000 for polymers having from
ten to twenty five branch units of functionality three; for
polymers having ten to fifty branch units of functionality
three this limit is reached at MW = 30000-100000.

It might be mentioned that Zimm and Stockmayer present
formulae (15a), (18) and (19) for polymers having one,
two and three branch units only, whereas for more
complex molecules their ‘formulas become excessively
unwieldy’ [1]. Later, Kurata and Fukatsu [38] derived a

general formula:
3p—2 1

glecl)= "=+ F( f—1°BB*—1) (44)
where p=(f — 1)B+ 1 is the total number of chains
(spacers, branches, and main chain ends). Our indepen-
dently derived two-parametric formula (40) can be
transformed into the three-parametric Eq. (44).

Egs. (41) and (42) provide the opportunity to prove the
following:

Corollary 2. The Zimm-Stockmayer g-ratio of acyclic
statistical polymers having equal chain lengths and
unbranched trifunctional and tetrafunctional branch units,
cannot be smaller than 1/2 and 1/3, respectively.

The corollary follows directly from Eqs. (41) and (42) for
B > 1, in which case only the ratios of the third power
coefficients remain.

6. The long chain branch graph (LCBG) for acyclic
polymers having a variable ratio of the branch length
and spacer length

The comb-like long-chain branch polymers are synthe-
sized with the same branch length Ny and a random distri-
bution of the spacing between the branch points. A generally
accepted model assumes the same spacer length Ng, and
uses the branch/spacer length ratio a = Ng/Ng as a basic
parameter. Formulae for g of this class of polymers have
been obtained by Berry and Orofino [41]. Our topological
description of these polymers proceeds from a graph having
B branching points of degree f, as well as having branches and
spacers with Ng and Ns vertices, respectively. Such a graph,
shown above may be called long chain branch graph (LCBG).

We derived a formula for the Wiener number of such a
polymeric macromolecule (see Appendix E):

Weomb(f> B, a,Ng) = N3 {(B + 1)’ + aB(f — 2)[a* + (B + 1)
X2B+3a+1)+a(f—2)(B—1DBa+B+1)
+3d°(f — 3)1/6). (45)

Denoting the total number N of vertices in LCBG by
N =B+ 1)Ng + (f —2)Ns = Ng[B+ 1 + aB(f — 2)]
(46)

and applying Eq. (5) for the Wiener number of a linear
polymer with Ng > 1, one obtains the formula for the
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normalized Wiener number or for its equivalent, the g-ratio:

B+1° +aB(f —2[d>+ B+ 1DQ2B+3a+1)+a(f —2)B—13a+B+1)+3d(f — 3)]

¢(LCBG) =

g-values.

3 (47)
[a(f —2)B+ B+ 1]

For a = 1 (Ng = Np), Eq. (47) reduces to Eq. (41). It can mole fraction of the backbone, k = M,/MW :
be shown that Eq. (47) is equivalent to Berry and Orofino’s 3G+ 1)
[41] Eq. (22), and these two equations produce the same g(pom—pom) = E+3K0 —k) + Tk(l —k)?

Figs. 6 and 7 illustrate the trends of variations in the g- 3f —1

o wi - thi + (1—k? (49)
ratio with varying parameter a within the 0.1-10 range for 212

polymers having up to 10 branch units of functionality three
and four, respectively. Both figures show a sharp decrease in
g when the parameter a varies from 0.1 to 1.0. When a
continues to grow from 1 to 10, the g-ratio of polymers
having more than four branch units decreases, although in
a much slower rate. Polymers with two branch units show
clearly expressed minimum at 1.20 (f = 3) and 1.80 (f =
4), respectively. The functionality-three combs with three
and four branch points have rather flat minimum, whereas
the functionality-four combs with three arms form a plateau.
The figures enable a variety of choices for designing poly-
mers with a prescribed g-ratio, e.g. for LCB polymers
having branch units of functionality three the value g =
0.4 can be obtained from species either having eight
branches and branch length/spacer length ratio of 4.6:1 or
having nine branches with a 3.6:1 ratio or having ten
branches with a 3.1:1 ratio.

7. The Wiener number of a—w polymers

These polymers may be regarded as two stars of function-
ality f'and branches of length &, connected by a linear chain
of length N.. When N, = 1, pom—pom polymers result. This
class of polymers is a useful theoretical model because
polymer properties converge at short chain to those of a
star, whereas for very long chain macromolecules approx-
imate linear polymers. We derived the following formula
for the normalized Wiener number W' = g :

NZ + 2fNg[N§(3f — 2) + 3(N, + Np)(N, + fNp)]

gla— o) = (N + 2Ng)?

(48)

It can be shown that Eq. (48) can be transformed into
Milner’s [48] expression which is given in terms of the

8. Comparison with measured g-ratios

The comparison between theory and experiment became
possible after a series of model long chain branched poly-
ethylenes have recently been synthesized by using anionic
polymerization techniques, and some of their properties
have been measured [49]. In Table 3 we compare the g-
values calculated by our theory with the experimental and
calculated ones given in reference [49]. In analyzing the
results, one should take into account the insufficient
accuracy of the measurements, what may be inferred, for

Table 3
Experimental versus calculated g-ratios of some model star, comb, and
a—w polyethylenes

MW data g (this paper) g (measured)*’ g (calculated)”'
Stars

(27); 0.78 0.78 0.78
(43); 0.78 0.73 0.78
(45); 0.78 0.70 0.78
(49); 0.78 0.76 0.78
(51); 0.78 0.76 0.78
(53); 0.78 0.77 0.78
(50),5 0.93 0.91 0.93
(51),5 0.94 0.91 0.94
(51),15 0.85 0.84 0.85
(51),25 0.81 0.78 0.81
(19),83 0.90 0.96 0.90
(15),85 0.90 0.91 0.92
(40),60 0.79 0.84 0.79
a—w polyethylenes

(6),27(6), 0.87 0.94 0.95
(12),27(12), 0.79 0.90 0.95
(10),95(10), 0.94 0.97 0.95
(10);107(10)5 0.87 0.94 0.95
(10)592(10)s 0.74 0.80 0.74
Combs

101-(7)30 0.36 0.46 0.31
97-(23)x 0.22 0.32 0.25
100-(5), 0.89 1.00 0.88
100-(5)» 0.64 0.70 0.58
100-(6)12 0.62 0.75 0.63
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Fig. 6. Variations in the g-values of LCB polymers having 2-10
branch units of functionality three and a variable branch length/spacer
length ratio.

example, from the strongly overestimated value g = 1.00
for the comb with two branches of MW = 5000 each, as
well as from the irregular variations in the g-values for the
six symmetrical 3-arm stars. In the light of the above, the
agreement between the values calculated by the topological
theory and the experimental ones may be assessed as very
good for stars and satisfactory for a—w polyethylenes.
However, for the highly branched combs the calculated
values are systematically lower than the experimental

02 03 04 05 06 07 08 09 1
Branch Length / Spacer Length Ratio

0 01

Fig. 7. Variations in the g-values of LCB polymers having 2—10 branch
units of functionality four and a variable branch length/spacer length ratio.

ones, as found also in [49]. This finding is not a surprising
one, particularly for the highly crowded combs with 26 and
30 arms. Some of the differences between calculated and
measured g-values may be due to solvent effects that, to our
knowledge, have not been studied in detail with these model
polymers.
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9. The Wiener number in the viscoelastic theory of
polymers of Rouse [11] and Zimm [12]

This paper was almost completed when we were
acquainted with the graph theoretical analysis of Eichinger
[3—6] and Yang [7] of the bead-and-spring theory of poly-
mer viscoelasticity of Rouse [11] and Zimm [12]. We show
below that the Wiener number, though unidentified by these
authors, is also contained in the Rouse—Zimm theory of
polymers having no cycles, and thus a new light on the
significance of the Wiener number for the polymer theory
could be shed. In addition, the generalization of our
approach is shown to polymers containing rings, for
which the Wiener number fails to produce correct results.
The extension of the method is based on another important
graph invariant, the Kirchhoff number, which for acyclic
graphs coincides with the Wiener number. A rigorous
proof and generalization of Theorem 1 to molecules
containing cycles is thus presented.

The dimensions and viscoelastic properties of polymers
are obtained within the Rouse and Zimm bead-and-spring
model by finidng the eigenvalues of the Rouse matrix R and
the Zimm matrix Z. The very high rank of these matrices
causes difficulties in the solution of the eigenvalue problem
for polymers with complicated topology. Eichinger [3—-6]
has shown in 1980 that the mean-square radius of gyration
(ré) of a macromolecule with N atoms can be expressed by
the formula:

2_b2N—11_b2 Z+_b2 - 5
0=y 23 T UED = yuRD (50)
where A; is the ith eigenvalue of the Zimm matrix, and Z"is
the Moore—Penrose generalized inverse of the Zimm matrix
Z (the Zimm matrix contains one zero eigenvalue and has
no inverse). Z"* contains all nonzero eigenvalues of the
initial matrix Z, which are simultaneously eigenvalues of
the Rouse matrix R.

In a paper summarizing his work since 1985, Yang [7]
emphasized the equivalence of the Rouse and Zimm
matrices to the adjacency matrix and admittance (or Kirch-
hoff) matrix in graph theory, respectively. The Kirchhoff
matrix is also called the Laplacian matrix because it is a
matrix of a discrete Laplacian operator. (The Laplacian
matrix applications in chemistry have been reviewed by
Trinajsti¢ and coworkers [50]). This matrix has vertex
degrees (or functionalities) as diagonal elements, whereas
the off diagonal entries are — 1 for neighboring vertices and
zero for nonadjacent vertices. Yang developed graph
theoretical techniques for solving the eigenvalue problem
of the R matrix, and proved that the trace of the inverse
Rouse matrix can be calculated from the ratio of two of
the Rouse polynomial coefficients:

arla; = —te(R™ ") (51)

This relationship enables the calculation of the chain

dimension from the derivatives of the characteristic
polynomials without knowing the generalized inverse Z ™,
which is difficult to find for polymers with complicated
topologies. In the example presented by Yang [10] for the
calculation of a; and a, of the linear chain, the expression
for the second coefficient is N(N — 1)(N + 1)/6 which is the
well known formula for the Wiener number of linear chains
[13,15]. However, it has not been identified by Yang and the
opportunity to find the relationship with the Wiener number
has thus been missed.

Such simple relationships, however, have already been
found for trees (acyclic graphs) by Mohar [51,52] in 1991:

a=(—D"?w (52)
N-—1 i

W:NZ ;Y

i=1

(33)

Inserting Eq. (53) into Eq. (50) we therefore obtain

oy _ b
(rg) = a4 (54a)

Similar dependence of the mean-square radius of gyration
and the Wiener number has recently been obtained by
Widmann and Davies [31] for linear polymers only,
proceeding from Flory statistical theory [53]. Our formula
(54a) is valid for any branched polymer as well, and as
shown below it can be generalized so as to include cyclic
polymers.

Eq. (54a) just found is almost identical with Eq. (12), the
only difference being the denominator N(N — 1) instead of
N?. Another unsolved problem was the failure of the Wiener
number approach to reproduce the correct radius of gyration
of a simple cyclic polymer (3/4 of the (ré)lin value was
obtained instead of the correct 1/2 ratio). The literature
search helped to find the missing pieces of the puzzle (amaz-
ingly, one of us co-authored in 1994 a paper [54] that could
provide an earlier clue).

In 1995, Gutman and coworkers [55] made use of the
right-hand side of Eq. (53) as a molecular descriptor for
cyclic graphs and called it ‘quasi-Wiener index’, W™

. N711
w =—NZT

i=1 ‘M

(54b)

The correlation between W and W has been studied [55]
in the case of benzenoid molecules and found to be linear,
though not particularly good.

In 1993, Klein and Randi¢ [56] advanced the concept for
a new metric imposed on graphs, according to the electrical
resistance rules of Kirchhoff. The newly defined distances
between graph vertices i and j were termed ‘resistance
distances’, (rd);;. The sum over all resistance distances in
the graph has been defined by analogy with the Wiener
number, and in a later paper [54] this sum was termed the
Kirchhoff number, Kf. Klein and Randié¢ [56] have also
shown that the sum of the resistance distances of a graph
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G is proportional to the trace of the generalized inverse L™
of the Laplacian (Kirchhoff) matrix L:

N N
Kf(G)= > (rd); = Nir(L") (55)

i=1 j=1

In 1996, almost simultaneously, Klein and coworkers
[57] and Gutman and Mohar [58] have shown the equiva-
lence of the quasi-Wiener number and the Kirchhoff
number. The Kirchhoff number for acyclic polymers is
equivalent to the Wiener number, because in tree-graphs
the resistance distances coincide with the graph distances
(the resistances in a series are additive just as the graph
distances; it is only in cyclic graphs where resistances in
parallel are added according to the inverse-proportional
law). More precisely, Kf =2W because the Kirchhoff
number is calculated as the sum of all matrix entries of
the resistance distance matrix, whereas the Wiener number
is defined by Eq. (9) as a sum of the upper-right submatrix of
the distance matrix. Therefore, Eq. (54a) for the mean-
square radius of gyration of an acyclic structure, can be
generalize for species containing cycles as well:

o _ b
(rg) = 2—me (56)

The mismatch in the denominator of Egs. (54a) and (12),
(N2 vs. N(N — 1)), is now traced down to the fact that Kf is
averaged by dividing to the fotal number N? of the Kirch-
hoff matrix entries, whereas the Wiener number is averaged
by dividing by N(N — 1)/2 Eq. (56) also produces the
correct value for the radius gyration of monocyclic
polymers to be 1/12 of the mean square end-to-end distance
of the linear polymer having the same number of non-
hydrogen atoms.

This analysis enables the more precise definition of the
topological radius of a molecule we presented in Definition
8, and may be regarded as a proof for a generalized Theorem
1 for the relation between the mean-square radius of
gyration and the topological radius.

Generalized Definition 8: The topological radius of any
(macro) molecule having N (non-hydrogen) atoms is the
average resistance distance in its molecular graph, i.e. the
Kirchhoff number Kf of the graph divided by the total
number of entries in the resistance distance matrix:

Kf
Rip = v (57a)
For acyclic structures Eq. (10) thus modifies to
2w
Rtop = F (57b)

Generalized Theorem 1. The mean-square radius of
gyration of a (macro) molecule is proportional to its
topological radius, i.e. it is proportional to the average

resistance distance in the corresponding molecular graph:

b’ Kf

N (58)

2

(r, §> = %Rtop =

Besides the better elucidation of the topological funda-
ment of the macromolecule dimension, the analysis
presented in this section may be extended to the interpreta-
tion of viscoelastic properties of polymers. Proceed from the
formula relating the zero-shear viscosity, 1y, to the mean-
square radius of gyration [59]:

n = %g re) (59)

where £ is the friction coefficient, and ¢ is the number of
polymer chains in a unit volume. Inserting Eq. (56) or (54a)
into Eq. (59) produces formulae in which the zero-shear
viscosity in the Zimm—Rouse range is directly related to
the Kirchhoff number, and the Wiener number, respectively:

cb2§
= ——K] 60
Mo 12 N2 f ( a)
and for polymers without atomic rings
ch* &
M= onz W (60b)

An approximate relationship, showing that for polymers
of equal molecular weight but different topology intrinsic
viscosity scales like W*2, has been recently reported by
Widmann and Davies [31] proceeding from the Kirkwood
and Riseman theory [60]:

Mo o< W2 im* (61)

10. Conclusion

This study started with revealing the implicit topological
essence of the Zimm—Stockmayer theory of the dimensions
of macromolocules. Introducing the concept of the random
distribution polymer graph, as the smallest structure preser-
ving the connectivity of all macromolecules that have a
uniform number of branch units, we avoided the tedious
and necessarily approximate averaging over molar mass
and branch distribution by size and positioning along the
polymer backbone. Combining this concept with the
definition of the topological radius of a molecule on a
graph theoretical basis resulted in an explicit topological
theory. The latter rationalizes the calculations of the radius
of gyration and the g-ratio of polymers containing no cycles
enabling thus the calculations for statistical polymers
having any complex branch architecture. As specific cases
it reproduces the explicit formulas given for the simpler
types of structures in the classical paper of Zimm and Stock-
mayer [1], and those of Berry and Orofino [41] and Kurata
and Fukatsu [38]. The extension of the topological theory to
statistical polymers having equal chain length was enabled
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by another useful concept — that of the uniform distribution
polymer graph. The general formulas derived allowed the
evaluation of the approximations of the earlier theory.
Formulae were obtained for the first time for calculating
the g-index of hyperbranched polymers with different
level of complexity, as well as for calculating the g-ratio
of polymers having branch units of mixed functionality.
LCB polymers with a variable branch length/spacer length
raio and model pom—pom polymers were also investigated.
The comparison of our theory with the experimental g-
values of the model star-, comb-, and pom—pom type poly-
ethylenes is satisfactory. The results obtained also confirm
the conclusion made recently [49] about the necessity of
corrections to the theory of polymer dimensions for highly
branched polymer structures.

Combining our approach with recent relevant theoretical
work on the properties of the Kirchhoff matrix and the
resistance distance matrix [50-58] confirmed the impor-
tance of the topological index of Wiener in determining
the dimensions of polymers having no rings. In addition,
with the use of the Kirchhoff number, the way to extend
the method is shown so as to include polymers containing
atomic rings. The two topological single number descriptors
of the polymer structure, the Wiener number and the
Kirchhoff number, were included directly in Rouse—Zimm
type equations determining the radius of gyration and zero-
shear viscosity of polymers. The use of Wiener’s and
Kirchhoff’s numbers, compared to the eigenvalue- and
polynomial-coefficients-based approaches [3-7], has the
advantage to enable the deduction of exact general formulas
that include very wide classes of polymers with complex
topology. The extension to other viscoelastic properties
is also possible and is a part of our ongoing project.
These results, supplementing the important previous
work of Eichinger [3-6], Yang [10], and Widmann
and Davies [31], indicate the feasibility of a ‘first
principle’ theory of polymer dynamics based entirely
on polymer topology.

Finding some answers in this study has also prompted us
to ask two very general questions that go beyond polymer
science and chemistry. The first one is about the real mean-
ing of molecular topology. How is it possible that a simple
4-vertex graph can successfully model the radius of gyration
and g-ratio of statistical starlike polymers with any possible
size and configuration? Is topology nothing else than an
averaged metric? The second question is related to the
metric itself. The Wiener number is based on a ‘constant’
metric; the distance between two neighboring points in this
metric is always the same. In case of molecules containing
cycles, however, the Wiener number fails and has to be
replaced by the Kirchhoff number, which is the sum of
‘resistance’ distances that are no more constant but depend
on the molecule as a whole. Is then the space metric only a
specific case of a more general metric, based on the elec-
trical resistance rules of Kirchhoff, and if the answer were
‘Yes’ what would that mean?

Acknowledgements

The authors are indebted to Dr P. Jiang, and Dr T. Sun
(ExxonMobil Chemical, Baytown) for the acquaintance
with the publications of Yang [7] and Kurata and Fukatsu
[38], respectively. The constructive remarks of the referees
are gratefully acknowledged.

Appendix A. Derivation of the formula for the Wiener
number of random distribution polymer graphs (RDG)
having branches of first order

The general formula for the Wiener number of a
RDG having B first-order branch units of functionality
f can be obtained proceeding from the Wiener number
of the respective random distribution graphs having one

branch unit:

W,=4.1+62=16

W, =31+32=9

Both cases can be described by the simple formula

=Dy p A

Wl =f X1+

In calculating the Wiener number for B branch units, the
sum of all ones and twos will be BW; — (B — 1) = Bf2 -
B-1)= B(f2 — 1) + 1. The number of distances three,
four, etc., calculated between two branch units will be (f —
1)%. For a graph with B branch units, the number of the
distances larger than two will be found by multiplying the
(f — 1)* factors by the number of pairs of branch units
between which such distances occur. There are (B — 1)
such pairs for distances three, (B — 2) pairs for distances
four, etc. Therefore,

W=B(f-1D+1+ (- 1D B-1)X3+(B-2)x4
+ o+ IX B+ 1)

B+1

=B(fP-D+1+(f -1 D iB—i+2)
i=3

=B(f*-1+1+ é(f— 1’BB*+6B—17) (A2

Appendix B. Derivation of the formula for the Wiener
number of random distribution polymer graphs (RDG)
having branches of first and second order

We proceed from a theorem proved in 1990 by Polansky
and Bonchev [14]. According to this theorem, if we transfer
a subgraph in a graph from a terminal vertex u to a vertex v,
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the change in the Wiener number of the graph upon the

transfer equals the product of the number of vertices ny;

in the transferred subgraph and the difference in the distance

numbers d, and d,, of vertices v and u respectively.
Example:

1 2G) 3 4k) 5 6(v) 7 8(u) 1 2
B=11; f=3; BJZI; B=2;B/(final)=1; u>v>k>j; u=B- BJ -B,-B+1

AW = nll(dv - du) (BI)

d, =1+ (-1

u B/ By
XI:Zi+Z(u—j+1+i)+Z(u—k+l+i)]
i=1 i=1

i=2

(B2)
v+1 u—v+1 B/
dV:1+(f—1)[2+Zi+ i+ —j+2+i)
=3 i=3 i=1
By
+Z(v—k+2+i] (B3)
i=1

From Egs. (B1)-(B3), as well as substituting n;; =
B,(f — 1), one arrive at

AW = —B,(f — )*(B;+ B, +v— 1)(B— B, — B, — B, — V)
(B4)

or, more generally;

i—1 i
W=—(f—1)> ZB(1—1+ > BS)(B—i—ZBX)il
s=j

=j s=j—1
(B5)

where ¢ is the number of branched vertices along the main
chain. From here, adding AW to the Wiener number of the
normal RDG (Eq. (17)), one arrives at formula (22).

Appendix C. Derivation of the formula for the Wiener
number of random distribution polymer graphs (RDG)
having branches of third and fourth order

2 3
2

Two second-order branches and
one third-order branch

J
Seven first-order branches and
three second-order branches

We proceeded from the Polansky—Bonchev theorem [14]

(See Eq. (B1) in Appendix B), and described the macro-
molecule with a third order branch as obtained from a
parent structure having branches of only first and
second order after transferring ¢ atoms from a second
order branch j between two points u and v of this
branch. Denote by j’ the branching point on branch j
at which the third order branch is attached. The differ-
ence in the distance d, and d, of vertices v and u is
composed of two types of components. The first one is
characterized by a constant difference A, =d,; —d,;
between the distances from u and from v to all vertices
not belonging to the branch j, as well as to all vertices
from the branch j that are between j and ;' (including
7). Therefore one needs only to multiply A, by the
number of these vertices, which is n — (f — 1)k;, k; being
the number of branched vertices between u and v, excluding
vertex j', as well as excluding vertices u and v; n is the total
number of vertices diminished by ¢ + 2 (vertices u and v and
the transferred vertices ¢ are excluded). The second compo-
nent of AW/ (C;) accounts for the difference in the distances
between the pairs of vertices u, k and v, k, where k # j' isa
branched vertex belonging to the path uv. The same differ-
ence d, —d, characterizes the f — 2 single-vertex
branches attached to vertex k. One thus arrives at the
formula:

AW'(C) = 1(d, — d,) = t{(duj’ —dy)ln — (f — Dkl

u—1
+(f-D Z (du — dvk)}

k=j' +1

(ChH

For the example shown, n =18, =2, k; =1, dy, =1,
dy, = 2, wherefrom AW’(CJ-) = 28 results. By dividing Eq.
(28) by the Wiener number of the corresponding linear
isomer with n = 18, the correction for g is obtained (Ag =

—0.029).

Appendix D. Derivation of the formula for the Wiener
number of acyclic statistical comb-like polymers having
arms of uniform length

In deriving the formula for the Wiener number of a
UDG, representing this class of polymers, we consider
it composed by contributions from the UDG shell,
including all branches and chain ends, and contributions
from the UDG core, which incorporates the rest of the
main chain. These two terms were calculated by the proce-
dure used by Wiener [12] namely, by summing over all
bonds the products of the total number of vertices, N; and
Npg, in the left and right molecular fragments the current
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bond connects.

W(UDG) = > N.Ng = Ween + Weore
all edges

1

=[(f =B +2] > iN 1)

i=1

B-D2 1

203 SO = DEHIIN = = D)

Jj=1 i=1

= %1{2(1 +DI(f— DB+ 13N —21—1)

+ 1B — 1)B+ )(f — DI3N — BI(f — )
—-31-3]} (D1)

Substituting / and N from Eq. (34) into Eq. (D1) one
obtains the explicit formula for the Wiener number of an
UDG in terms of molar mass of the equal chains Mj, the
total molar mass M, the number of branch units B, and their
functionalities f.:

1

X[(f = DB+ 1]+ M —2)B— DB+ (f—D

X[3(M — Myg) — B(f — D)(Mg — 2) — 42]} (D2)

Appendix E. Derivation of the formula for the Wiener
number of acyclic statistical comb-like polymers having
a variable branch length/spacer length ratio

Denote the constant branch length by Ng, the constant
spacer length by Ng. Their ratio a, the total number of
atoms N, and the number of atoms in the main polymer
chain N¢ are then expressed as

N=@B+ 1)Ng + (f —2)BNg = Ng[B + 1 + (f — 2)aB];
a = NB/NS (El)
The Wiener number of such a comb can be calculated as a
sum of four terms accounting for the LCBG graph distances
within the main chain, W,, within the branches, W,, as well

as between the vertices of the main chain and the branches,
W, and between the vertices of different branches, W, :

Weomb(f> B, a) = W + Wy, + Wy, + Wy, (E2)

The first two terms in Eq. (E2) can be readily calculated
by using the formula (5) for the Wiener number of a linear

graph, and neglecting terms of order unity:

W, = Ne(Nec — D)(Ne + 1)/6 = N2/6 = (B + 1)’N3/6 (E3)

Wo = (f = 2BWy; = (f — 2)BNg(Ng — D(Ng + 1)/6

= (f — 2)BNj/6 = (f — 2)Ba’N3/6
(E4)

The third term may be presented as the sum of distances
between the main chain vertices and those of the (f — 2)
branches attached to each branch vertex:

B B
W = (f =2)D Wi = (f = 2) D {D; + (D; + Ne)
i=1 =

i=1

+ (D;; +2N¢) + - + [D;; + (Ng — N1}

B Ng—1
=(f-2)> [(Di,-NB +Ne Y 1)]
i=1

J=1

B
=(f- 2)2 [NgDj; + NcNp(Ng — 1)/2] (ES)
i=1

where the D;; term describes the sum of distances between
the first vertex of branch i and all the N vertices of the main
chain, whereas the summation over j accounts for all the
distances between the remaining Ng — 1 vertices of the
branch and those of the main chain. The D;; term can be
calculated as the sum of distances between vertex 1 of
branch i, and all the vertices left and right of the branching
vertex i:

iNg Nc — iNs

DiiZZl-i- Z m
=1

m=1
= [(iNg + 2)iNg + (N — iNg + 1)(Nc — iNs)1/2  (E6)

After substituting Eqgs. (E6) and (E1) into Eq. (ES), and
neglecting terms of order unity, one obtains

W.p = (f — 2)aB(B + 1)(2B + 3a + 1)Ng/6 (E7)

The branch /branch component of the Wiener number for
this class of combs can be presented as a sum over all
distances between the vertices of the branches attached to
different branch vertices i and j, and those attached to the
same branching vertex i:

B—1 B
W = (f =27 D D W+ (f = 2)(f = 3)BW;/2 (EB)

i=1 j=1

The derivations for W;; and W;; are similar to those of
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Egs. (ES) and (E6)
Wiy =W, + (W, + Np) + (W) +2Np) + -
Ny — 1
+ [W; + (Ng — DNg] =NB<W1 + ) i)
i=1

= (Ng — DNE = N} = &’ N3 (E9)
where
Wy =243+ +Ng+1=(Ng + 3)Np/2

describes the sum of distances between the first vertex of
one of the branches attached to vertex i, and all the Ny
vertices of another branch attached to the same vertex i.
Similarly, for D;, which is the sum of distances between
the first vertex of one of the branches attached to vertex i,
and all the Ny vertices of another branch attached to the
vertex j, one has

N +1
= > [(— N5 + k] = (j — )NsNg + (N + 3)Np/2
k=2
(E10)
Ny — 1
+ [Dy + (Ng — 1)Ng] :NB(Dl + > i)
i=1

= N3[(j — i)NgNg + N + 1] (E11)

After substituting Eqs. (E9), (E11), and (E1) into Eq.
(E8), and neglecting terms of order unity one obtains

Wy = (f — 2)a®BN3[(f —2)(B — D(3a+ B + 1)
+ 3a(f — 3)1/6 (E12)

Substituting now Egs. (E3), (E4), (E7), and (E12) into
Eq. (E2) one arrives to

Weomb(f> B, a,Ng) = N3 {(B + 1)’ + aB(f — 2)[a* + (B + 1)
X@2B+3a+ 1) ta(f—2)(B—1)Ba+B+1)

+3a*(f — 3)1/6 (E13)
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